Untukmenentukan kuartil pada data tunggal, kita harus mempertimbangkan banyaknya data (n) (n) terlebih dahulu. Penghitungan kuartil tergantung dari kondisi banyaknya data tersebut. Sebagai ilustrasi, misalkan terdapat seperangkat data yaitu x_1, x_2, \cdots, x_n. x1,x2,⋯,xn. Letak-letak kuartil pada data tersebut dapat dilihat pada gambar di Jadi kuartil bawah (Q1) dan kuartil atas (Q3), dari kedua data tersebut yaitu adalah 30 dan 45 maka: Q R = Q 3 - Q 1. Q R = 45 - 30. Q R = 15. Adapun simpangan kuartil nya yaitu adalah: Q d = ½Q R. Q d = ½.15. Q d = 7,5. Jadi jawabannya : jangkauan interkuartil dan simpangan kuartil dari data tersebut ialah 15 & 7,5. Simpangankuartil = 1/2 (Q 3 - Q 1) Simpangan kuartil = 1/2 (17,5 - 12) = 1/2 (5,5) = 2,75. Jawaban soal ini adalah A. Contoh soal 4 Data berat badan siswa kelas 12 SMA (dalam kg) sebagai berikut 47, 53, 62, 54, 48, 55, 59, 60, 48, 50, 58, 62, 63, 66, 68, 90, 63, 58, 59. Jangkauan dan simpangan kuartil data tersebut adalah A. 2 B. 3 C. 5 D. 7 E. 9 Simpangankuartil dari data 16,15,15,19,20,22,16,17,25,29,32,2932 adalah - 10570446. Fakultas Pertanian Universitas Panca Bhakti menerima mahasiswa baru pada tahun 2021 sebanyak 528 orang dan 211 orang diantaranya telah membawa netbook 1Simpangan kuartil dari data tersebut adalah A.2 B.1,5 C.1 D.0,5 2.Tentukan kuartil bawah(Q1),kuartil tengah(Q2),dan kuartil atas(Q3)dari data berikut! 20 35 50 45 30 30 25 40 45 30 35! 3.Nilai rapor Ani, siswa kelas IX sebagai berikut: a. Kuartil bawah, median, dan kuartil atas; b. Jangkauan interkuartil dan simpangan kuartil Darigambar di atas, terlihat bahwa ada empat bagian yang sama di dalam sekumpulan data yang dibagi menurut pembagian kuartil dengan penjelasan: a. 25% pertama adalah bagian yang paling rendah. b. Bagian 25% berikutnya adalah bagian paling rendah kedua hingga ke median. c. Bagian 25% setelah median adalah bagian paling tinggi kedua. 1FkNIV. - Dilansir dari Buku Strategi Praktis Menguasai Tes Matematika SMA 2020 oleh Sobirin, pada ukuran penyebaran data, kita akan menemukan rumus menghitung jangkauan, jangkauan kuartil/hamparan, simpangan kuartil, hingga deviasi standar. Berikut pengertian dan rumus dari jangkauan, hamparan, hingga deviasi standarBaca juga Ukuran Pemusatan dan Penyebaran Data Berkelompok Jangkauan J Jangkauan adalah selisih antara data dengan nilai terbesar dan data dengan nilai terkecil pada data berkelompok. Rumus jangkauan data terbesar-data terkecil = Jangkauan kuartil/hamparan H Jangkauan kuartil/hamparan adalah selisih dari kuartil ketiga dengan kuartil hamparan Simpangan kuartil Qd atau jangkauan semi antarkuartil Simpangan kuartil atau jangkauan semi antarkuartil adalah setengah dari hasil kali selisih kuartil ketiga dengan kuartil pertama. Rumus simpangan kuartil Simpangan rata-rata SR Simpangan rata-rata adalah simpangan untuk nilai yang diobservasi terhadap rata-rata. Rumus simpangan rata-rata atau Baca juga Menentukan Simpangan Rata-rata dari Data A. Simpangan KuartilAdik-adik, tahukah kalian? Simpangan kuartil dismbolkan dengan Qd. Apa itu simpangan kuartil? Simpangan kuartil adalah setengah dari jangkauan kuartil atau setengah dari hamparan atau setengah dari jangkauan interkuartil. Rumusnya bisa dituliskanB. Simpangan Rata-rata1. Simpangan rata-rata data tunggal2. Simpangan rata-rata data kelompokYuk kita lihat contoh soalnya1. Diketahui data 12, 14, 15, 16, 17, 17, 18, 19Hitunglah simpangan kuartil dari data tersebut!JawabBanyak data ada adalah antara data ke 4 dan data ke 5Q2 = 16 + 17 2 = 33 2 = 16,5Q1 = 14 + 15 2 = 29 2 = 14,5Q3 = 17 + 18 2 = 35 2 = 17,5Simpangan QuartilQd = ½ Q3 – Q1 = ½ 17,5 – 14,5 = ½ 3 = 1,52. Berapakah simpangan kuartil dari data 6, 7, 7, 8, 8 , 8, 9, 9, 10, 11, 12, 13JawabBanyaknya data = 12Q2 adalah diantara data ke 6 dan data ke 7Q2 = 8 + 9 2 = 17 2 = 8,5Q1 = 7 + 8 2 = 15 2 = 7,5Q3 = 10 + 11 2 = 21 2 = 10,5Qd = ½ Q3 – Q1 = ½ 10,5 – 7,5 = ½ 3 = 1,53. Berapakah simpangan kuartil dari data 7, 5, 10, 20, 13, 8, 2JawabUrutkan dulu datanya 2, 5, 7, 8, 10, 13, 20Banyak data = 7Q2 adalah data ke 4Q2 = 8Q1 = 5Q3 = 13Qd = ½ Q3 – Q1 = ½ 13 – 5 = ½ 8 = 44. Tentukan simpangan rata-rata dari data 32, 23, 28, 26, 20, 11, 22, 8, 17, 13JawabPertama, cari rata-ratax ̅= 32 + 23 + 28 + 26 + 20 + 11 + 22 + 8 + 17 + 13 10 = 200 10 = 205. Perhatikan tabel berikutSimpangan rata-rata dari data di atas adalah...Jawabx ̅ = 2 x 6 + 3 x 9 + 4 x 5 + 5 x 7 + 6 x 3 30 = 12 + 27 + 20 + 35 + 18 30= 112 30= 3,7Oke.. semoga kalian semakin paham ya dengan 2 materi ini.. sampai bertemu di materi-materi selanjutnya...

simpangan kuartil dari data 16 15 15